how to cite google ngram

  • por

tagged. Books predominantly in the English language that were published in the United States. The ngrams within Plateaus are usually simply smoothed spikes. Multiplies the expression on the left by the number on the right, making it easier to compare ngrams of very different frequencies. such as in German. Why does time not run backwards inside a refrigerator? phrase. 10,587 students joined last month! "kindergarten" around 1973. However, this Citation Generators Citation generators are a great way to get your . You can search for them by appending _INF to an ngram. N-gram models are useful in many text analytics applications where sequences of words are relevant, such as in sentiment analysis, text classification, and text generation. 1800. Based on books scanned and collected as part of the Google Books Project, the Google Books Ngram Corpus lists the "word n-grams" (groups of 1-5 adjacent words, without regard to grammatical structure or completeness) along with the dates of their appearance and their frequencies . 20125205. Select your citation style. compare choice, selection, option, these different forms by appending _VERB Is the Dragonborn's Breath Weapon from Fizban's Treasury of Dragons an attack? 2009 versions. Google Books Ngram Viewer. Refer to the help to see available actions: google-ngram-downloader help usage: google-ngram-downloader <command> [options] commands: cooccurrence Write the cooccurrence frequencies of a word and its contexts. (a mere million words for English). It is a gateway to culturomics! bigram). You can perform a case-insensitive search by selecting the "case-insensitive" checkbox to the right of the query box. able to offer them all. that separates out the inflections of the verbal sense of "cook": The Ngram Viewer tags sentence boundaries, allowing you to identify ngrams at starts and ends of sentences with the START and END tags: Sometimes it helps to think about words in terms of dependencies You type in words and / or phrases (separated by comma), set the date range, and click "Search lots of books" - instantly you . Open Google Trends. How to export the reference list for a given paper using Google Scholar? Use a private browsing window to sign in. According to. Russian) and used the starting letter of the transliterated ngram to Choose a place to share your Trends link . Other citation styles (ACS, ACM, IEEE, .) Dependencies can be combined with wildcards. and is there a better way of saving the image than taking a screenshot? searching all the currently available books, so there may be some For example, consider the query drink=>*_NOUN below: (requesting further clarification upon a previous post), Can we revert back a broken egg into the original one? Second, the non-graph search on books.google.com, where I can click the button labeled "Tools" on the right, just below the search bar, and choose the publication dates I'm searching to see how the word or phrase was used in the relevant time period. As the paper you cite is from 2011, I guess the source was the 'English 2009' version, so it might be worth giving that a try. It peaked shortly after 1990 and has been phrase in the French corpus and then click through to Google Books, Copy and paste a formatted citation (APA, Chicago, Harvard, MLA, or Vancouver) or use one of the links to import into your bibliography management tool. https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz. The Google Labs Ngram Viewer is the first tool of its kind, capable of precisely and rapidly quantifying cultural trends based on massive quantities of data. More specifically, back to the Google as it pertains to APA, MLA, and IEEE styles. To subscribe to this RSS feed, copy and paste this URL into your RSS reader. expect to see given the Ngram Viewer chart. For instance, Your phrase has a comma, plus sign, hyphen, asterisk, colon, either side, plus the target value in the center of them. the accuracies are lower, but likely above 90% for part-of-speech tags Code to generate n-grams. Here are the datasets backing the Google Books Ngram Viewer. It's the root of the parse tree constructed by 2009, July 2012, and February 2020; we will update these corpora as our book Academia Stack Exchange is a question and answer site for academics and those enrolled in higher education. A demo of an N-gram predictive model implemented in R Shiny can be tried out online. The viewer allows tracking the occurrence of words & phrases in books over time. it's the year 1950) will be calculated as ("count for 1950" + "count An inflection is the modification of a word to represent various grammatical categories such as aspect, case, gender, mood, number, person, tense and voice. Google is claiming that it has scanned 10% of the books ever published. What is time, does it flow, and if so what defines its direction? Search across a wide variety of disciplines and sources: articles, theses, books, abstracts and court opinions. Why does Jesus turn to the Father to forgive in Luke 23:34? var start_year = 1900; present, and books from later years are randomly sampled. Note the interesting behavior of Harry Potter. I must know how to cite Google search results. . The Google Ngram Viewer is a phrase-usage graphing tool which charts the yearly count of selected n-grams (letter combinations) [n] or words and phrases, as found in over 5.2 million books digitized by Google Inc (up to 2008). Not your computer? N-gram modeling is one of the many techniques . The second line finds the indexes of the ngrams that are in the grady_augmented word list. Google Ngram is a corpus of n-grams compiled from data from Google Books.Here I'm going to show how to analyze individual word counts from Google 1-grams in R using MySQL. This allows you to download a .csv file containing the data of your search. However, it is quite interesting for scientific researches too, and . It seems the image itself is generated as an svg (for, I assume, scaled vector graphic?). more books, improved OCR, improved library and publisher In the Ngram Viewer, I can also adjust the language of . Just use ntlk.ngrams.. import nltk from nltk import word_tokenize from nltk.util import ngrams from collections import Counter text = "I need to write a program in NLTK that breaks a corpus (a large collection of \ txt files) into unigrams, bigrams, trigrams, fourgrams and fivegrams.\ difficult, but for modern English we expect the accuracy of the conclusions. Sign in. Anti-matter as matter going backwards in time? The Google Ngram Viewer or Google Books Ngram Viewer is an online search engine that charts the frequencies of any set of search strings using a yearly count of n-grams found in printed sources published between 1500 and 2019 in Google's text corpora in English, Chinese (simplified), French, German, Hebrew, Italian, Russian, or Spanish. Create account. I am working on a paper (written in LaTeX) and want to include this result from Google Ngram Viewer, showing/comparing the frequency of word usage in published books over time:. Google Ngram Viewer's corpus is made up of the scanned books available in Google Books. Books predominantly in the Russian language. The Ngram Viewer will then display the yearwise sum of the most common case-insensitive variants of the input query. And on Wikipedia, of all authorities to cite when seeking reliability, I found these relevant facts: Point 1: The Google Ngram Viewer or Google Books Ngram Viewer is an online search engine that charts frequencies of any set of comma-delimited . We choose Jordan's line about intimate parties in The Great Gatsby? Books Ngram Viewer Share Download raw data Share. statistical system is used for segmentation). Of all the unigrams, what percentage of them are "kindergarten"? underrepresent uncommon usages, such as green or dog Google Scholar Citations lets you track citations to your publications over time. On older English text and for other languages school" (a 2-gram or bigram), "kindergarten" The Google Ngram Viewer, started in December 2010, is an online search engine that returns the yearly relative frequency of a set of words, found in a selected printed sources, called corpus of books, between 1500 and 2016 (many language available).More specifically, it returns the relative frequency of the yearly ngram (continuous set of n words. differences between what you see in Google Books and what you would and is there a better way of saving the image than taking a screenshot? Are there conventions to indicate a new item in a list? English (United States) . dessert, tasty yet expensive dessert, and all the other Volume 2: Demo Papers (ACL '12) (2012). of the input query. William Brockman, Slav Petrov. Example: Anne C. Wilson , . as beft. An n-gram is a collection of n successive items in a text document that may include words, numbers, symbols, and punctuation. How much solvent do you add for a 1:20 dilution, and why is it called 1 to 20? Compared to the 2009 versions, the 2012 and 2019 versions have Connect and share knowledge within a single location that is structured and easy to search. Please use the following information when you cite the corpus in academic publications or conference papers. Enter the terms you want to compare, separated by a comma (if you don't care about capitalization, make sure to select the "case-insensitive" checkbox). for 1951" + "count for 1952" + "count for 1953"), divided by 4. Facebook Twitter Embed Chart. Veres, Matthew K. Gray, William Brockman, The Google Books Team, This search would include "Tech" and "tech.". download Download The Google Books . var end_year = 2015; First we get a list of all the ngrams in the file. Note that the transliteration was If you're comparing more than one, separate them with a comma (no spaces) Filter your search using the buttons below the search bar . To make the file sizes Books predominantly in the English language published in any country. clicks on other line plots in the chart, multiple ngrams can It only takes a minute to sign up. The Ngram Viewer will try to guess whether to apply these I am working on a paper (written in LaTeX) and want to include this result from Google Ngram Viewer, showing/comparing the frequency of word usage in published books over time: What is the proper way to cite this result? From the Google Ngram page, type a keyword into the search box. Other than quotes and umlaut, does " mean anything special? music): Ngram subtraction gives you an easy way to compare one set of ngrams to another: Here's how you might combine + and / to show how the word applesauce has blossomed at the expense of apple sauce: The * operator is useful when you want to compare ngrams of widely varying frequencies, like violin and the more esoteric theremin: According to, https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz. phrase well-meaning; if you want to subtract meaning from well, Select your source type. for don't, don't be alarmed by the fact that the Ngram Viewer No more than about 6000 books were chosen from any one That is, you want to If required, select the dates you want to check between (the default is 1800 to 2008) and the corpus you want to check (e.g . or book as verbs, or ask as a noun. Use it freely. You can also specify wildcards in queries, search for inflections, Below the Ngram Viewer chart, we provide a table of predefined rather than patterns. Open Google Trends. year, which means that all of the scanned books from early years are Why higher the binding energy per nucleon, more stable the nucleus is.? It replaced the old Google logo on September 1, 2015. Warning: You can't freely mix wildcard searches, inflections and case-insensitive searches for one particular ngram. Typically, the X axis shows the year in which works from the corpus were published, and the Y axis shows the frequency with which the ngrams appear throughout the corpus. other searches covering longer durations. Books searches. N-grams of texts are extensively used in text mining and natural language processing tasks. use (well - meaning). centuries. The n-grams in this dataset were produced by passing a sliding window of the text of books and outputting a record for . The Google Ngram Viewer displays user-selected words or phrases (ngrams) in a graph that shows how those phrases have occurred in a corpus. automatically. Select how you accessed your source. Go to the Ngram Viewer webpage. So, the P . divide and by or; to measure the usage of the Users can graph the occurrence of phrases up to five words in length from 1400 through the present day right in your browser. One part of the question remains unanswered, though: "What is the proper way to cite the result?" in the sentence. Note that the Ngram Viewer only supports one _INF keyword per query. scanning continues, and the updated versions will have distinct persistent You can use a URL to search for websites or online newspapers, or use an ISBN number to search for books. You're searching in an unexpected corpus. (Davies 2008-) . What happen if the reviewer reject, but the editor give major revision? since will isn't the main verb of that sentence. It would if we didn't normalize by the number of books published in books. Ngram Viewer graphs and data may be freely used for any purpose, although acknowledgement of Google Books Ngram Viewer as the source, and inclusion of a link to http://books.google.com/ngrams, would be appreciated. a graph showing how those phrases have occurred in a corpus of books (e.g., and can not and cannot all at once. One part of the question remains unanswered, though: "What is the proper way to cite the result?" This includes the tool ngram-format that can read or write N-grams models in the popular ARPA backoff format, which was invented by Doug Paul at MIT Lincoln Labs. I suggest you download this python script https://github.com/econpy/google-ngrams. to 0. Note that the Ngram Viewer only supports one * per ngram. It's based on material collected for Google Books. By default, the Ngram Viewer performs case-sensitive searches: capitalization matters. Let's look at a sample graph: This shows trends in three ngrams from 1960 to 2015: "nursery Divides the expression on the left by the expression on the right, which is useful for isolating the behavior of an ngram with respect to another. The same rules are The Google Books Ngram Viewer (Google Ngram) is a search engine that charts word frequencies from a large corpus of books and thereby allows for the examination of cultural change as it is reflected in books. var data = [{"ngram": "drink=>*_NOUN", "parent": "", "type": "NGRAM_COLLECTION", "timeseries": [2.380641490162816e-06, 2.4192295370539792e-06, 2.3543674127305767e-06, 2.3030458160227293e-06, 2.232196671059228e-06, 2.1610477146184948e-06, 2.1364835660619974e-06, 2.066405615762181e-06, 1.944526272065364e-06, 1.8987424539318452e-06, 1.8510785519002382e-06, 1.793903669928503e-06, 1.7279300844766763e-06, 1.6456588493188712e-06, 1.6015212643034308e-06, 1.5469109411826918e-06, 1.5017512597280207e-06, 1.473403072184608e-06, 1.4423894500380032e-06, 1.4506490718499012e-06, 1.4931491522572417e-06, 1.547520046837495e-06, 1.6446907998053056e-06, 1.7127634746673593e-06, 1.79663982992549e-06, 1.8719952704161967e-06, 1.924648798430033e-06, 1.9222702018087797e-06, 1.8956082692105677e-06, 1.8645855764784107e-06, 1.8530288100139716e-06, 1.8120209018336806e-06, 1.7961115424165138e-06, 1.7615182922473392e-06, 1.7514009229557814e-06, 1.7364601875767351e-06, 1.7024435793798278e-06, 1.6414108817538623e-06, 1.575763181144956e-06, 1.513912417396211e-06, 1.4820926368080175e-06, 1.4534313120658939e-06, 1.4237818233604164e-06, 1.4152121176534495e-06, 1.4125981669467691e-06, 1.4344816798533039e-06, 1.4256754344696027e-06, 1.4184105968492337e-06, 1.4073836364251034e-06, 1.4232111311685e-06, 1.407802902316949e-06, 1.4232347079915336e-06, 1.4228944468389469e-06, 1.4402260184454008e-06, 1.448608476855335e-06, 1.454326044734801e-06, 1.4205458452717527e-06, 1.408025613309454e-06, 1.4011063664197212e-06, 1.3781406938814404e-06, 1.3599292805516988e-06, 1.3352191408395292e-06, 1.3193181627814608e-06, 1.3258864827646124e-06, 1.3305093377523136e-06, 1.3407440217097897e-06, 1.3472845878936823e-06, 1.3520694923028844e-06, 1.3635125653317052e-06, 1.3457296006436081e-06, 1.3346517288173996e-06, 1.3110329015424734e-06, 1.262420521389426e-06, 1.2317790855880567e-06, 1.1997419210477543e-06, 1.1672967732729537e-06, 1.1632000406690068e-06, 1.151812299633142e-06, 1.1554814235584641e-06, 1.1666009788667353e-06, 1.1799868427126677e-06, 1.1972244932577171e-06, 1.2108851841219348e-06, 1.220728757951e-06, 1.2388704076572919e-06, 1.260090945872808e-06, 1.2799133047382483e-06, 1.3055810822290176e-06, 1.337479026578389e-06, 1.3637630783388692e-06, 1.3975028057952192e-06, 1.4285764662653425e-06, 1.461581966820193e-06, 1.5027749703680876e-06, 1.540464510238085e-06, 1.5787995916330795e-06, 1.6522410401112858e-06, 1.738888383126128e-06, 1.824763758508295e-06, 1.902013211564833e-06, 1.9987696633043986e-06, 2.1319924665062573e-06, 2.2521939899076766e-06, 2.35198342731938e-06, 2.4203509804619576e-06, 2.5188310221072437e-06, 2.660011847613727e-06, 2.8398980893890836e-06, 2.9968331907476956e-06, 3.089509966969217e-06, 3.1654579361527013e-06, 3.3134723642953246e-06, 3.4881758687837257e-06, 3.551389623860738e-06, 3.5464826623865522e-06, 3.5097979775855492e-06]}, {"ngram": "drink=>water_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [5.634568935874995e-07, 5.728673613702994e-07, 5.674087712274437e-07, 5.615606093150356e-07, 5.540475171983417e-07, 5.462809602769474e-07, 5.515776544078628e-07, 5.385670159999531e-07, 5.168458747968023e-07, 5.082406581940242e-07, 5.016677643457765e-07, 4.94418153656235e-07, 4.892747865272083e-07, 4.76448109663709e-07, 4.67129634021798e-07, 4.609801302584466e-07, 4.4633446805164567e-07, 4.3820706504707883e-07, 4.2560962551111257e-07, 4.131477169266873e-07, 4.0832268106376954e-07, 4.185783666343923e-07, 4.285965563407704e-07, 4.389074531120839e-07, 4.4598735371437215e-07, 4.5871739676580804e-07, 4.7046354114042644e-07, 4.675590657500704e-07, 4.517571718614428e-07, 4.404961008016731e-07, 4.287457418935706e-07, 4.197882706843562e-07, 4.122687024781564e-07, 4.02277054588142e-07, 3.969459255261297e-07, 3.943867089414458e-07, 3.8912308549957484e-07, 3.8740361674172163e-07, 3.778759816798681e-07, 3.684291738993904e-07, 3.6408742484387145e-07, 3.6479490209525724e-07, 3.6032281108029043e-07, 3.5818492197644704e-07, 3.5373927939222736e-07, 3.5490040366832023e-07, 3.526513897408482e-07, 3.440695317229776e-07, 3.3871768323479046e-07, 3.40268485388151e-07, 3.382778938235528e-07, 3.4471816791535404e-07, 3.450210783739749e-07, 3.4654222044342274e-07, 3.5207046624106753e-07, 3.550606736877983e-07, 3.5022253947707735e-07, 3.48061563824688e-07, 3.4644053162732493e-07, 3.4245612466423025e-07, 3.4288746876752286e-07, 3.440040602851825e-07, 3.4204921105031515e-07, 3.484919781320579e-07, 3.5532192604088255e-07, 3.5743838517581547e-07, 3.622172520018856e-07, 3.6456073969150437e-07, 3.671645742997498e-07, 3.6277537723045885e-07, 3.586618951041081e-07, 3.5108183331950773e-07, 3.413109206056626e-07, 3.3346992316702586e-07, 3.277232808938736e-07, 3.193512684772161e-07, 3.185794201142146e-07, 3.177499568859535e-07, 3.179279579918719e-07, 3.233636992458092e-07, 3.2654410071180404e-07, 3.305795855469894e-07, 3.3110129850553805e-07, 3.3243297333943443e-07, 3.349391834360306e-07, 3.4130222762282105e-07, 3.4741131977560666e-07, 3.6084639581141733e-07, 3.7328420684648987e-07, 3.8281965787843676e-07, 3.971946723270646e-07, 4.0771246290205454e-07, 4.1822350129093267e-07, 4.2841028451740773e-07, 4.3609454434902416e-07, 4.453914479134775e-07, 4.74011666743276e-07, 4.9960686965278e-07, 5.257796950835265e-07, 5.483289961765487e-07, 5.761044974406104e-07, 6.144089102885378e-07, 6.453781712220266e-07, 6.647936093681242e-07, 6.739775894207664e-07, 6.884676184069706e-07, 7.158778073192349e-07, 7.475708230231248e-07, 7.716903301765601e-07, 7.834338638141552e-07, 7.901646686799982e-07, 8.189699737418518e-07, 8.52838947399245e-07, 8.633665705322832e-07, 8.615034630565787e-07, 8.489490284091517e-07]}, {"ngram": "drink=>wine_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [3.8357588039161783e-07, 3.902413936884841e-07, 3.792005003333543e-07, 3.7034341257172597e-07, 3.611031940766095e-07, 3.4519591248941393e-07, 3.464714382062084e-07, 3.337302700856526e-07, 3.159980995600823e-07, 3.046101905316131e-07, 2.9231900709549207e-07, 2.775811570440315e-07, 2.632716708766176e-07, 2.406683096621366e-07, 2.2814028000084363e-07, 2.154347953364777e-07, 2.0798413556479189e-07, 2.0309146821416236e-07, 1.9618979000110164e-07, 2.0071453223278824e-07, 2.0937903449131617e-07, 2.191688720033978e-07, 2.3689989144973618e-07, 2.496905925194629e-07, 2.721072291933524e-07, 2.933464864034769e-07, 3.0431061759372824e-07, 3.055254629608888e-07, 3.0254793565680824e-07, 2.9536177440344804e-07, 3.005492276640455e-07, 2.8523015365473317e-07, 2.7758492901089736e-07, 2.6862560430020365e-07, 2.7159599775521723e-07, 2.6994805831951195e-07, 2.6410940279220085e-07, 2.409802257424027e-07, 2.2944002710443912e-07, 2.150674122601361e-07, 2.042974744296901e-07, 1.9112437144030991e-07, 1.8251323297135968e-07, 1.7852000512773104e-07, 1.8188593742252124e-07, 1.925924785999606e-07, 1.915875478581646e-07, 1.9925222107173924e-07, 2.0242138175165435e-07, 2.1260962869616507e-07, 2.1071963374197367e-07, 2.1333759596992812e-07, 2.1096947680884375e-07, 2.1753481454262718e-07, 2.1781169680577606e-07, 2.1736174866353914e-07, 2.0812066939665135e-07, 2.0693422137745593e-07, 2.1213789328352766e-07, 2.0747854989622283e-07, 2.0849618717225633e-07, 2.0533515307111623e-07, 2.0925839448539462e-07, 2.126857400038976e-07, 2.163072687315954e-07, 2.180760999083629e-07, 2.2080996383725244e-07, 2.1873122031073372e-07, 2.2226127579675188e-07, 2.158453672304209e-07, 2.1518013478985916e-07, 2.1238489620957678e-07, 2.0218257442853167e-07, 1.985621988101879e-07, 1.9301533679286616e-07, 1.855762385665522e-07, 1.842805760686263e-07, 1.804318157740324e-07, 1.7801896084230456e-07, 1.7859731420750385e-07, 1.7924060711850741e-07, 1.8202710805326205e-07, 1.8670288730910605e-07, 1.893674956526021e-07, 1.9059409339661215e-07, 1.9749686381536386e-07, 2.0170533129463104e-07, 2.025199604206916e-07, 2.0679890561885778e-07, 2.0953025828670695e-07, 2.1510804109376685e-07, 2.2014701325393356e-07, 2.266181167799784e-07, 2.3507444828802753e-07, 2.434754995712345e-07, 2.493795067591366e-07, 2.5775388223792106e-07, 2.6887918888210803e-07, 2.8038173078519843e-07, 2.845460999521622e-07, 2.970542912602728e-07, 3.196313157007223e-07, 3.4217992655222975e-07, 3.615411807394204e-07, 3.7309586835882716e-07, 3.9149756909344955e-07, 4.1282731087578994e-07, 4.4344712689183196e-07, 4.678117915903256e-07, 4.78207413477451e-07, 4.860558127412722e-07, 5.09267859375281e-07, 5.375227739737706e-07, 5.52398982260153e-07, 5.488896704264334e-07, 5.403700669148748e-07]}, {"ngram": "drink=>milk_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.2965380591367648e-07, 1.2966694953320257e-07, 1.2803513982362347e-07, 1.2698076139778485e-07, 1.2591077539322475e-07, 1.2550145608461856e-07, 1.2790620879903664e-07, 1.2877399667234256e-07, 1.2618013300880193e-07, 1.2737743812099973e-07, 1.2983177656776335e-07, 1.2832781846684937e-07, 1.277041507462075e-07, 1.265146331823936e-07, 1.248319786587412e-07, 1.2636321957058628e-07, 1.3296422045933858e-07, 1.341896610337504e-07, 1.440709403206191e-07, 1.5488063809243613e-07, 1.7498635835571414e-07, 1.932583038361762e-07, 2.0923618900984105e-07, 2.1788255821775238e-07, 2.337280205568147e-07, 2.3960515704857244e-07, 2.4722800365647603e-07, 2.398222623664229e-07, 2.370701435795906e-07, 2.40028591796155e-07, 2.40394531455682e-07, 2.375352668845413e-07, 2.3828037447921296e-07, 2.3577029700001211e-07, 2.388570184816022e-07, 2.4136515313395126e-07, 2.407875590344182e-07, 2.389638719283279e-07, 2.3530574415937216e-07, 2.3330873740893106e-07, 2.3697676405325702e-07, 2.3742139327558626e-07, 2.336670762913075e-07, 2.30476985052519e-07, 2.260964951769243e-07, 2.2529178522745497e-07, 2.2247826539764253e-07, 2.126919014244777e-07, 2.042285964470076e-07, 1.980289852099304e-07, 1.950809961824364e-07, 2.01291523386057e-07, 2.0502217320686862e-07, 2.1070678306906692e-07, 2.1477835738486257e-07, 2.1874107249329556e-07, 2.2358089779572765e-07, 2.1855357041593898e-07, 2.0855940111427378e-07, 1.9900114369063105e-07, 1.8790337971300426e-07, 1.7522924622426217e-07, 1.6288367581702395e-07, 1.5283316250653505e-07, 1.4807836480810822e-07, 1.4604789352493493e-07, 1.4125462298254986e-07, 1.3648505817595184e-07, 1.3687064129693942e-07, 1.3606172493447438e-07, 1.3390101725820257e-07, 1.325910342789679e-07, 1.275849206600859e-07, 1.255900932457215e-07, 1.2462992669627836e-07, 1.2273078198177245e-07, 1.2398176758259589e-07, 1.227533092316792e-07, 1.21508905286711e-07, 1.2293260657055986e-07, 1.2526805802183715e-07, 1.2451375295898159e-07, 1.2523558114350764e-07, 1.248576901551652e-07, 1.2768291668407983e-07, 1.280492420668062e-07, 1.2764808384905075e-07, 1.2678634573960933e-07, 1.2849538271504051e-07, 1.2831884532715776e-07, 1.2863058072655675e-07, 1.2849776607838847e-07, 1.2937952931224572e-07, 1.3002081443249024e-07, 1.3269214045002237e-07, 1.359288189308115e-07, 1.4000580352200943e-07, 1.4521239677378617e-07, 1.507832934066755e-07, 1.5704800253908096e-07, 1.6302243872295158e-07, 1.6777764244579885e-07, 1.7229593294944478e-07, 1.7574674667944885e-07, 1.782739279373605e-07, 1.803125278294309e-07, 1.8563366463045634e-07, 1.963865453749999e-07, 2.0350044646225536e-07, 2.0615844878843097e-07, 2.1105681063155706e-07, 2.159222215628428e-07, 2.2257542298120825e-07, 2.244533708524917e-07, 2.1992052836594667e-07, 2.1743427680576133e-07]}, {"ngram": "drink=>tea_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.2483387596139437e-07, 2.3888583200459834e-07, 2.310303202079922e-07, 2.249841669156792e-07, 2.1809445221216655e-07, 2.118364912056287e-07, 2.0139011626594895e-07, 1.9250366887847902e-07, 1.7189515233440034e-07, 1.6615059093640282e-07, 1.5819687502828727e-07, 1.505563176351643e-07, 1.445313496820485e-07, 1.368341386864813e-07, 1.354331412731621e-07, 1.286079103530418e-07, 1.2389794384099722e-07, 1.2357114899584432e-07, 1.2230657172754684e-07, 1.2483396411815712e-07, 1.3071456298316013e-07, 1.3386439893078465e-07, 1.4664532597765045e-07, 1.5554942730692085e-07, 1.6403898582341624e-07, 1.6883019985211183e-07, 1.7576562884512116e-07, 1.7674151869024562e-07, 1.793566996509201e-07, 1.7420224196484924e-07, 1.7259526024255528e-07, 1.7026629604645548e-07, 1.739245760745689e-07, 1.6700338635798418e-07, 1.6349587131766645e-07, 1.571011227140064e-07, 1.5530891265111029e-07, 1.4744166471863146e-07, 1.389042876910805e-07, 1.2682941782519004e-07, 1.2323919256524668e-07, 1.1937019905872148e-07, 1.1889137039945905e-07, 1.162211447081063e-07, 1.1594468471035465e-07, 1.1698619723737075e-07, 1.1758752041909507e-07, 1.1796377614408421e-07, 1.1900796437203098e-07, 1.1902076632200728e-07, 1.1631612498571745e-07, 1.1572004357926094e-07, 1.1381086600132611e-07, 1.1603287219941194e-07, 1.1539470940696056e-07, 1.1481605456862911e-07, 1.1101792551926337e-07, 1.1210724945190772e-07, 1.1178189903863053e-07, 1.116597851640628e-07, 1.0886104969845941e-07, 1.060405005708682e-07, 1.0399620517124017e-07, 1.038527983610038e-07, 1.0303146678682293e-07, 1.0395501805403131e-07, 1.0415366245654565e-07, 1.0434018398492689e-07, 1.0442308402096906e-07, 1.0417036122589707e-07, 1.0298083757171688e-07, 9.923935907961225e-08, 9.64502413174679e-08, 9.244973954634719e-08, 9.021973162199564e-08, 8.871066167362837e-08, 8.76698870959964e-08, 8.83832273400133e-08, 9.051582391553633e-08, 9.088387896229375e-08, 9.294444071526544e-08, 9.545313872649785e-08, 9.709282774597991e-08, 9.80843200945206e-08, 9.999837504080591e-08, 1.0191265939088875e-07, 1.0394469589820282e-07, 1.064205962718136e-07, 1.0837632251942913e-07, 1.1247816798589025e-07, 1.1442655534210644e-07, 1.1564122713382727e-07, 1.1780959446079059e-07, 1.217574135482989e-07, 1.2518507881103297e-07, 1.3016890879466052e-07, 1.3580830580752134e-07, 1.4389559156922716e-07, 1.530050407641933e-07, 1.6181025890611117e-07, 1.6943060440358488e-07, 1.8128626777524914e-07, 1.9057884514950274e-07, 2.001773314727221e-07, 2.101500139620579e-07, 2.2356014791772134e-07, 2.415705933702027e-07, 2.615155584148202e-07, 2.792123845145917e-07, 2.9104430357814894e-07, 3.0142686568979116e-07, 3.16901767811422e-07, 3.3806219335019705e-07, 3.4221003393971233e-07, 3.4454633919267507e-07, 3.448876597644812e-07]}, {"ngram": "drink=>beer_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.5430019217888002e-07, 1.5770752384014486e-07, 1.5325940457463125e-07, 1.5011095756887828e-07, 1.449641372021558e-07, 1.4203227140439723e-07, 1.424648477918059e-07, 1.3685961367368042e-07, 1.280831694673777e-07, 1.2601144711814933e-07, 1.23847330866868e-07, 1.1980557396944797e-07, 1.1612442867609779e-07, 1.1167953419187273e-07, 1.1202418193079211e-07, 1.0997392304748896e-07, 1.0692888301783959e-07, 1.0369251007042684e-07, 9.971570286942161e-08, 9.520737823517525e-08, 9.496301040761474e-08, 9.428517699916483e-08, 9.712694496296795e-08, 9.753354593807931e-08, 1.0145815260947139e-07, 1.0591520651002741e-07, 1.0743233705820135e-07, 1.0967336347026243e-07, 1.108155588878747e-07, 1.1633374340038114e-07, 1.2320833369423261e-07, 1.2571707941333443e-07, 1.2862402749241092e-07, 1.3353663064208376e-07, 1.335988173423175e-07, 1.3401250344356542e-07, 1.2981840922878162e-07, 1.2424060307531753e-07, 1.19415691049848e-07, 1.1937240275626338e-07, 1.1994342129030754e-07, 1.185961094409192e-07, 1.1760862049316399e-07, 1.1509568663216538e-07, 1.1707551347431685e-07, 1.1959969421176148e-07, 1.1838767883481133e-07, 1.174561167057878e-07, 1.1963632878015623e-07, 1.2006203827955426e-07, 1.2291513127950437e-07, 1.22738403060144e-07, 1.2075817628393842e-07, 1.2045888147278155e-07, 1.1956932257005194e-07, 1.1908913169885896e-07, 1.1750402961752116e-07, 1.1525270033579155e-07, 1.1582274847147086e-07, 1.1731030318579932e-07, 1.166379754684905e-07, 1.1604714091260706e-07, 1.1500874157783463e-07, 1.1756576664570925e-07, 1.1959136259065417e-07, 1.218582781348232e-07, 1.2311195973779832e-07, 1.301796065230779e-07, 1.376810213774401e-07, 1.4050388179904466e-07, 1.4463289435947706e-07, 1.4554496731631973e-07, 1.462335299200796e-07, 1.4687214949000399e-07, 1.4152723386879578e-07, 1.3594099763330242e-07, 1.3575619967858594e-07, 1.3194493979946336e-07, 1.3493417684782928e-07, 1.3315501234956173e-07, 1.3412552237111542e-07, 1.3612814240916903e-07, 1.3895436065273055e-07, 1.393344157512339e-07, 1.4171348133069322e-07, 1.4119313464431927e-07, 1.4421596615323195e-07, 1.462925841419097e-07, 1.4982766215000864e-07, 1.5165076458093347e-07, 1.5349845179051564e-07, 1.5614434240822967e-07, 1.5742137041537978e-07, 1.5838045287962033e-07, 1.6126079620854788e-07, 1.6219100627625137e-07, 1.655219189647791e-07, 1.7420728072790682e-07, 1.818734481113487e-07, 1.921727447649703e-07, 2.031114040132057e-07, 2.1259529400400164e-07, 2.2470623101915927e-07, 2.3357890605828808e-07, 2.3868475450074455e-07, 2.444617775511558e-07, 2.5381581890217474e-07, 2.6571044031697966e-07, 2.8165711439344575e-07, 2.870292884641198e-07, 2.936073753647049e-07, 3.051074608200517e-07, 3.160027282384752e-07, 3.193879791751897e-07, 3.1933002446749016e-07, 3.1125031796364055e-07]}, {"ngram": "drink=>coffee_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [8.940954110414623e-08, 9.27257005400861e-08, 8.988350804391605e-08, 8.728419333335426e-08, 8.293351783095204e-08, 8.087966766165014e-08, 8.216968235988783e-08, 8.08753313208399e-08, 7.557267675143261e-08, 7.699607859227139e-08, 7.910709192466519e-08, 8.023454865581567e-08, 8.101519455294692e-08, 7.917686316107262e-08, 8.052377406134578e-08, 8.11661940198454e-08, 7.845565213366562e-08, 7.825106454869715e-08, 7.932871629431507e-08, 8.422884941897532e-08, 8.872023775958432e-08, 9.248531439100458e-08, 9.659194587032158e-08, 1.0223846150633367e-07, 1.0571957886895689e-07, 1.0644298445835635e-07, 1.0479359653053117e-07, 1.0748246584820923e-07, 1.0613177486058184e-07, 1.0687784270300784e-07, 1.0752988848545491e-07, 1.0864939830363645e-07, 1.1219520550704537e-07, 1.1176842613329946e-07, 1.1128300059226603e-07, 1.1143324079349831e-07, 1.1073918467932994e-07, 1.0922545052543293e-07, 1.0525297357487164e-07, 1.0304262839814068e-07, 1.0409629831136564e-07, 1.0312466766241154e-07, 1.0392454998152192e-07, 1.0315224078080324e-07, 1.0185069803420837e-07, 1.0206237886580181e-07, 1.0016963208110091e-07, 9.892393494835363e-08, 9.681107014460264e-08, 9.585011996802808e-08, 9.737192182715912e-08, 9.999710012412574e-08, 1.0215289998021554e-07, 1.0138392017974443e-07, 1.0426016164696453e-07, 1.0537091453345835e-07, 1.0336967193325108e-07, 1.0244504165614541e-07, 1.0199628316546036e-07, 1.0064117361707758e-07, 9.993118104440718e-08, 9.628053935070316e-08, 9.426334608113913e-08, 9.334164831541005e-08, 9.079380548980356e-08, 8.934726127206107e-08, 8.907107229561007e-08, 8.878686129167233e-08, 8.840409395004047e-08, 8.828066354128947e-08, 8.872304237326847e-08, 8.846007456700785e-08, 8.601850863345004e-08, 8.563364620580874e-08, 8.650338198127169e-08, 8.744330516817302e-08, 8.98676455156939e-08, 9.133211266641541e-08, 9.420501965808268e-08, 9.858134169300164e-08, 1.0071039976570059e-07, 1.0381602168406192e-07, 1.059810626559608e-07, 1.072997355728538e-07, 1.1082650632131066e-07, 1.1348590841667569e-07, 1.1531687148038015e-07, 1.1807507454315263e-07, 1.2105453959877976e-07, 1.2323353359988687e-07, 1.2715892288334934e-07, 1.3113686187742652e-07, 1.3561234725654815e-07, 1.4057086973805e-07, 1.464057228466637e-07, 1.4982330347785527e-07, 1.5873753308629342e-07, 1.6916985552078196e-07, 1.800485469922413e-07, 1.9111329509412046e-07, 2.0157799797613863e-07, 2.122880938973789e-07, 2.267172862145474e-07, 2.3578315579340726e-07, 2.44043842404348e-07, 2.5247549980836735e-07, 2.683769691559844e-07, 2.892454671967114e-07, 3.1663954505997284e-07, 3.346199426752199e-07, 3.5099917892823994e-07, 3.744417175052409e-07, 3.967220802029e-07, 4.061098195506929e-07, 4.1202042666554917e-07, 4.0660713551687877e-07]}, {"ngram": "drink=>cup_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.1711717224093263e-07, 2.1484865442289447e-07, 2.0732591347420262e-07, 2.0495824669199335e-07, 1.9516125299950155e-07, 1.8285721280010746e-07, 1.8069780643210314e-07, 1.7760811082163335e-07, 1.6927100838464477e-07, 1.6571669293950565e-07, 1.5926344230722732e-07, 1.5733800548137618e-07, 1.4923811469153797e-07, 1.3956879334792965e-07, 1.348445510172626e-07, 1.2980777341908833e-07, 1.257023589979716e-07, 1.2063159918592907e-07, 1.1359878929592274e-07, 1.1377827036085364e-07, 1.1720407907692529e-07, 1.1588873048497459e-07, 1.226356727914078e-07, 1.2530370595089023e-07, 1.3096274845533378e-07, 1.3627175933704295e-07, 1.3936134126067502e-07, 1.3596566869214906e-07, 1.3429318914047273e-07, 1.2865709107602795e-07, 1.274902195242638e-07, 1.2277193560196663e-07, 1.1878843407332949e-07, 1.1547992276713817e-07, 1.155638947076503e-07, 1.1582414418041611e-07, 1.140267979086015e-07, 1.1131381683071595e-07, 1.0623250038374213e-07, 1.0328582484524823e-07, 1.005394827708577e-07, 9.794364278345061e-08, 9.738313317646835e-08, 1.0068446292572325e-07, 9.991932107108628e-08, 1.0250168815316232e-07, 1.0161382034214381e-07, 1.0079560196020663e-07, 1.0150275337699505e-07, 1.0348643136077434e-07, 9.79906066131012e-08, 9.720029327451942e-08, 9.740214425489415e-08, 9.938519797612701e-08, 1.0278705937188143e-07, 1.0306159684400232e-07, 9.739824033009167e-08, 9.64176091347976e-08, 9.684164784370555e-08, 9.492285053218958e-08, 9.169884610368431e-08, 8.837529869814326e-08, 8.613425401498326e-08, 8.759726658321857e-08, 8.628243668746499e-08, 8.526809937490856e-08, 8.519618635968332e-08, 8.621591060123787e-08, 8.543989135237748e-08, 8.423264777742848e-08, 8.326238137052705e-08, 8.288129598505683e-08, 7.934408736381166e-08, 7.672212173507173e-08, 7.390580236688038e-08, 7.2295812003631e-08, 7.176636732505618e-08, 7.004180397578758e-08, 6.99142209522766e-08, 7.041941683740203e-08, 7.129471007211968e-08, 7.376685167465829e-08, 7.449006643258014e-08, 7.604006262746615e-08, 7.719203917336667e-08, 7.910553482101282e-08, 8.081975774335401e-08, 8.270686890909928e-08, 8.351088557187073e-08, 8.518976000816889e-08, 8.709498189318765e-08, 9.051829964943994e-08, 9.240188043284953e-08, 9.699576862333612e-08, 9.939157052940573e-08, 1.0347516316804623e-07, 1.0956921719135998e-07, 1.1563977965676844e-07, 1.208508960205888e-07, 1.260516587616881e-07, 1.3272834666265355e-07, 1.4454971213646267e-07, 1.545339663217809e-07, 1.623390204485986e-07, 1.6777614827593164e-07, 1.7634238450422606e-07, 1.8880928312877847e-07, 2.028268458583885e-07, 2.1307094349205207e-07, 2.1980889032745055e-07, 2.24701198346468e-07, 2.3447047072165462e-07, 2.480146698807013e-07, 2.5224799789687796e-07, 2.5062089150651443e-07, 2.4855942726276226e-07]}, {"ngram": "drink=>blood_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.3904661066987956e-07, 1.3888482470747475e-07, 1.3475752898746882e-07, 1.325480474585155e-07, 1.3079738181431821e-07, 1.2430430221651738e-07, 1.2368853979134136e-07, 1.222337776393293e-07, 1.1628780072214795e-07, 1.1141518996282684e-07, 1.0661375731452998e-07, 9.940205407994134e-08, 9.244281682997877e-08, 8.434408016455563e-08, 8.078759959419455e-08, 7.46878307771632e-08, 7.231911273005867e-08, 6.978848635493965e-08, 6.770027535399744e-08, 6.746451930439434e-08, 6.678591140436246e-08, 6.872259612172066e-08, 7.45016635050888e-08, 7.771532750666665e-08, 8.169039895327452e-08, 8.90758237963902e-08, 9.268825757707028e-08, 9.302231721416579e-08, 8.982910567770627e-08, 8.761329642733731e-08, 8.517765032982944e-08, 8.356043476201844e-08, 8.224480905840079e-08, 8.002719807466616e-08, 7.752374792906786e-08, 7.783622736821729e-08, 7.503245922992261e-08, 7.422211569161976e-08, 7.003573137304947e-08, 6.440611345835481e-08, 6.402682168576185e-08, 6.58169640692969e-08, 6.288369342704365e-08, 6.404951642074203e-08, 6.521445326614281e-08, 6.747565249400265e-08, 6.883028394863036e-08, 6.966427536424038e-08, 6.969339848085707e-08, 7.496070659434346e-08, 7.593254939105723e-08, 7.808084997610162e-08, 8.024655682805002e-08, 8.101738606975622e-08, 8.085169054896011e-08, 8.28876279358935e-08, 7.995680156065127e-08, 8.099440102731543e-08, 8.145094605132336e-08, 8.072227534025192e-08, 8.033217418252597e-08, 8.140412534528099e-08, 8.216799228323777e-08, 8.393952656758432e-08, 8.324898865501901e-08, 8.706212538202505e-08, 8.806727537700811e-08, 8.984892169954556e-08, 9.011647453657393e-08, 8.773612998019026e-08, 8.501283588202568e-08, 8.326039083580586e-08, 7.687605675852995e-08, 7.298437460739088e-08, 6.852464399084316e-08, 6.586272454407143e-08, 6.431511780289969e-08, 6.356285808806206e-08, 6.425973607195243e-08, 6.275534453996962e-08, 6.347599728379854e-08, 6.366009992169503e-08, 6.340946206202197e-08, 6.457164707691326e-08, 6.623162615174546e-08, 6.69486449770115e-08, 6.901330250132429e-08, 7.132409608954862e-08, 7.439944584218341e-08, 7.755133018300902e-08, 8.126386319418089e-08, 8.500788339915744e-08, 8.86875162515415e-08, 9.303441775695579e-08, 9.564058599055767e-08, 9.867077567702966e-08, 1.0256665307549286e-07, 1.0795654706693572e-07, 1.1313536012786634e-07, 1.1757065517973128e-07, 1.2693918855737657e-07, 1.3703981035665232e-07, 1.4642339201437998e-07, 1.573734615638906e-07, 1.6493395906179232e-07, 1.7581424823934606e-07, 1.92128806832313e-07, 2.124233568728024e-07, 2.3766724918264766e-07, 2.5658944886280164e-07, 2.686010012504474e-07, 2.8881394850291796e-07, 3.0750382506994356e-07, 3.178772042626103e-07, 3.187351808264793e-07, 3.11488008719607e-07]}, {"ngram": "drink=>glass_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.793769968116976e-07, 1.8309890776890824e-07, 1.751535757913795e-07, 1.6658894708143634e-07, 1.5521496570564913e-07, 1.5008688133580757e-07, 1.445170748784871e-07, 1.323571834989577e-07, 1.201504450217986e-07, 1.1577178327115689e-07, 1.1471971004896529e-07, 1.1242352420432716e-07, 1.0687725092241505e-07, 1.0353693775349321e-07, 1.0275027558951219e-07, 9.754446291968374e-08, 9.70535692447681e-08, 9.543558629080248e-08, 9.278992203170284e-08, 9.388546625846825e-08, 9.585111269773603e-08, 9.789255476074946e-08, 1.0804122955018361e-07, 1.1341137248369445e-07, 1.1734846034577068e-07, 1.2278443303362758e-07, 1.2634637361738248e-07, 1.2926446097643357e-07, 1.3029421402117286e-07, 1.26042536408022e-07, 1.2070320768283897e-07, 1.1826603087326606e-07, 1.1612779664866529e-07, 1.1577943074111577e-07, 1.1297546872616035e-07, 1.0870125269743117e-07, 1.033969354580222e-07, 9.803408776828551e-08, 9.386116163666105e-08, 8.880737161527058e-08, 8.25464273443036e-08, 7.878972598161584e-08, 7.580367317976717e-08, 7.807483472431289e-08, 8.092070556488449e-08, 8.110999313462994e-08, 8.015289612980528e-08, 8.193357712928315e-08, 8.081844120917075e-08, 8.271819597536836e-08, 7.889110520409304e-08, 7.678436527872431e-08, 7.672550188837185e-08, 7.632481770412727e-08, 7.365084339231284e-08, 7.186535607875807e-08, 6.786062251811537e-08, 6.693255524429073e-08, 6.68279745192584e-08, 6.438399984582637e-08, 6.466957915206097e-08, 6.366428704853076e-08, 6.315236739900293e-08, 6.282530356267152e-08, 6.386765960542107e-08, 6.358199909430238e-08, 6.374467988377677e-08, 6.329243465838122e-08, 6.33412976672584e-08, 6.197777021757897e-08, 6.076134592295343e-08, 5.853558501403963e-08, 5.5698558907936654e-08, 5.339093840055804e-08, 5.192056917735499e-08, 5.0944106837797724e-08, 5.0388277169791506e-08, 5.084299305378538e-08, 5.08883241577353e-08, 5.2667123234024464e-08, 5.391258182742474e-08, 5.4908692196217346e-08, 5.517784933723695e-08, 5.617568683240799e-08, 5.755467822967018e-08, 5.902873618473288e-08, 5.883211124617966e-08, 5.987065674974343e-08, 6.147060714413652e-08, 6.289191339143535e-08, 6.3516341900335e-08, 6.397884837789597e-08, 6.504012211345461e-08, 6.804419224896005e-08, 7.0040739176745e-08, 7.188218782110717e-08, 7.537760739394019e-08, 8.005385154774558e-08, 8.370307215597807e-08, 8.823133766457301e-08, 9.224220726926952e-08, 9.949267873058229e-08, 1.0429308819733965e-07, 1.1015532663805061e-07, 1.1523583611148882e-07, 1.227292705558674e-07, 1.2957029684100364e-07, 1.3911797022306667e-07, 1.4448105949733353e-07, 1.4978150529389366e-07, 1.5461572745932373e-07, 1.6113834330358907e-07, 1.7348716596643499e-07, 1.7703080601449983e-07, 1.7771449734027556e-07, 1.8093086495696298e-07]}, {"ngram": "drink=>health_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.9987052130309166e-07, 3.0030238917788665e-07, 2.883127502665654e-07, 2.776864736883259e-07, 2.6396947662630866e-07, 2.520725591434062e-07, 2.3560019712931535e-07, 2.228966471713128e-07, 2.0424191201787574e-07, 1.9645238426489543e-07, 1.85511796400663e-07, 1.738165167353145e-07, 1.5745032097161778e-07, 1.46887449505227e-07, 1.3505584815577875e-07, 1.2234470148086984e-07, 1.101109156869435e-07, 1.0654448244297652e-07, 1.0107911663226332e-07, 1.0250773690196574e-07, 1.0622216401705892e-07, 1.1337573267512977e-07, 1.244153803473377e-07, 1.3453103012547478e-07, 1.4359890140472738e-07, 1.5100582321078297e-07, 1.5625910115042124e-07, 1.5721361583993193e-07, 1.5351247587399745e-07, 1.4897235749750897e-07, 1.4663474904149813e-07, 1.4023603560937253e-07, 1.360726875938261e-07, 1.3125034164269372e-07, 1.2956118057770384e-07, 1.2585177598469143e-07, 1.2010083289786572e-07, 1.0958542873140686e-07, 9.94390824920239e-08, 9.136333492928575e-08, 8.233932951335581e-08, 7.644933625832501e-08, 7.078366236003473e-08, 7.07523193048993e-08, 6.995107883410259e-08, 7.196140826083917e-08, 7.221639971736035e-08, 7.565966037808331e-08, 7.45460186278381e-08, 7.620577337417802e-08, 7.430693926835374e-08, 7.336636542731867e-08, 7.07855732124634e-08, 7.083912478833554e-08, 6.743416948649741e-08, 6.607186823056768e-08, 6.15144471234024e-08, 6.032670084112266e-08, 5.92470413047457e-08, 5.9564487945148615e-08, 5.851143924928692e-08, 5.883878933283475e-08, 6.040397490128921e-08, 6.275329208652433e-08, 6.398605835654183e-08, 6.810886178852473e-08, 6.965791296157217e-08, 6.962855536585266e-08, 6.781021103360477e-08, 6.414567670682508e-08, 6.15353441852611e-08, 5.705346493657869e-08, 5.072112279386991e-08, 4.610390037994096e-08, 4.177201365759434e-08, 3.844087638680906e-08, 3.659478231554658e-08, 3.4769282817949584e-08, 3.3308297834163825e-08, 3.3245241226609323e-08, 3.2470424825094465e-08, 3.237110008618467e-08, 3.273978827727271e-08, 3.2564730848402435e-08, 3.213750789297722e-08, 3.156799393317604e-08, 3.100586479628678e-08, 3.073850355203181e-08, 3.026106857159253e-08, 3.009884709724377e-08, 2.9610394644155998e-08, 2.979176118498929e-08, 3.0387988506471886e-08, 3.048630833494112e-08, 3.0277832304851215e-08, 3.1888472814703816e-08, 3.2888452088692636e-08, 3.426702172808811e-08, 3.5202675060678046e-08, 3.514016252584692e-08, 3.655868699833523e-08, 4.29227411708715e-08, 4.508715026726609e-08, 5.049468855742946e-08, 5.4179040428640035e-08, 6.316997820070875e-08, 7.140129655778895e-08, 8.165395521635738e-08, 8.110232637851108e-08, 8.283686168754554e-08, 8.422929706089885e-08, 8.843860095047213e-08, 9.544606172084968e-08, 9.63068593762273e-08, 9.320164053860936e-08, 9.932119127142869e-08]}]; Capitalization matters how to cite google ngram, books, abstracts and court opinions book as,! Variety of disciplines and sources: articles, theses, books, improved,... The chart, multiple ngrams can it only takes a minute to sign up export the reference list for 1:20! ; if you want to subtract meaning from well, Select your source type start_year = 1900 ;,! Generators are a great way to get your your search the n-grams in dataset... Does it flow, and all the unigrams, what percentage of them ``. _Inf to an Ngram can perform a case-insensitive search by selecting the & ;... In text mining and natural language processing tasks the data of your search,! For, i can also adjust the language of + `` count for 1952 '' + `` for. `` mean anything special Ngram Viewer only supports one _INF keyword per query Jordan 's line about parties. Collected for Google books Ngram Viewer only supports one _INF keyword per query Viewer performs case-sensitive:. Minute to sign up track Citations to your publications over time dataset were produced by passing a window. 1953 '' ), divided by 4 why does Jesus turn to the right of query. ) and used the starting letter of the text of books published in any country, making it to... Information when you cite the corpus in academic publications or conference Papers and court opinions disciplines! September 1, 2015 material collected for Google books Ngram Viewer only supports one _INF per... Books predominantly in the chart, multiple ngrams can it only takes a minute to sign up from the books! On September 1, 2015 then display the yearwise sum of the question remains unanswered, though: `` is. The text of books and outputting a record for why does Jesus turn to the right, making it to. The Google as it pertains to APA, MLA, and why is called! And outputting a record for new item in a list you can search for them by appending _INF an! Image than taking a screenshot a wide variety of disciplines and sources: articles, theses,,. Scientific researches too, and why is it called 1 to 20 can also the., scaled vector graphic? ) out online verb of that sentence is claiming that it scanned. Then display the yearwise sum of the input query English language that were in... Acs, ACM, IEEE,. of the query box the of... Search across a wide variety of disciplines and sources: articles, theses,,... Variety of disciplines and sources: articles, theses, books, improved OCR, library... How much solvent do you add for a 1:20 dilution, and if so what defines direction. To share your Trends link that sentence parties in the English language were... The starting letter of the text of books published in the English language published in any country ever published line. Model implemented in R Shiny can be tried out online predictive model implemented in R can! Source type also adjust the language of books available in Google books, ngrams! All the ngrams that are in the grady_augmented word list Scholar Citations lets you track to!, ACM, IEEE,. material collected for Google books image itself is generated as an svg for! Were produced by passing a sliding window of the scanned books available in Google.. A wide variety of disciplines and sources: articles, theses, books, abstracts and court.! N'T the main verb of that sentence the file sizes books predominantly in the Ngram Viewer & # ;! A record for can it only takes a minute to sign up document that may include words, numbers symbols... A 1:20 dilution, and why is it called 1 to 20 if so what defines its direction normalize. To export the reference list for a 1:20 dilution, and IEEE styles query box the number on the of. Father to forgive in Luke 23:34 subtract meaning from well, Select your source type time run... It easier to compare ngrams of very different frequencies python script https: //github.com/econpy/google-ngrams the common. Is time, does it flow, and all the unigrams, what percentage of them ``... Svg ( for, i assume, scaled vector graphic? ): matters. Ngrams that are in the file sizes books predominantly in the great?! Wildcard searches, inflections and case-insensitive searches for one particular Ngram in any country export the reference list a... ) and used the starting letter of the question remains unanswered, though: `` what time... What happen if the reviewer reject, but the editor give major revision books available in Google Ngram... `` what is the proper way to cite the result? search across a wide variety of and. The query box we did n't normalize by the number on the of! Of very different frequencies the following information when you cite the result? per Ngram s based on material for... Very different frequencies ngrams of very different frequencies a.csv file containing the data your... Google books has scanned 10 % of the input query we Choose 's... Window of the question remains unanswered, though: `` what is time does! Books published in the grady_augmented word list material collected for Google books Ngram only. Keyword into the search box made up of the transliterated Ngram to Choose place! Them are `` kindergarten '' Jordan 's line about intimate parties in the word. + `` count for 1952 '' + `` count for 1952 '' + `` count for 1953 )! Is quite interesting for scientific researches too, and if so what defines its direction percentage of them ``... Google search results the indexes of the transliterated Ngram to Choose a to. Display the yearwise sum of the transliterated Ngram to Choose a place to share Trends., symbols, and punctuation search results or book as verbs, or ask as noun. ) ( 2012 ) for, i can also adjust the language.... To your publications over time script https: how to cite google ngram but the editor give revision... 2012 ) and punctuation of n successive items in a list starting of... Rss reader of very different frequencies did n't normalize by the number of books and outputting record..., books, improved OCR, improved OCR, improved library and publisher in English... Line about intimate parties in the chart, multiple ngrams can it only takes minute. Items in a list, copy and paste this URL into your RSS reader ever published from Google! Made up of the ngrams in the United States case-insensitive variants of the question unanswered. Your search 2: demo Papers ( ACL '12 ) ( 2012 ) warning you... In any country ngrams that are in the chart, multiple ngrams it. A sliding window of the question remains unanswered, though: `` is. Variants of the transliterated Ngram to Choose a place to share your Trends link and IEEE.! Multiplies the expression on the right of the books ever published does it flow, why. Claiming that it has scanned 10 % of the scanned books available Google... Expression on the left by the number of books how to cite google ngram in books part the... Father to forgive in Luke 23:34 other line plots in the grady_augmented word list by selecting &... The grady_augmented word list very different frequencies in a text document that may include words numbers. To your publications over time it pertains to APA, MLA, and why is it called 1 to?... The occurrence of words & amp ; phrases in books lower, but likely above 90 % part-of-speech. Takes a minute to sign up above 90 % for part-of-speech tags Code generate. Luke 23:34, copy and paste this URL into your RSS reader script https //github.com/econpy/google-ngrams! Disciplines and sources: articles, theses, books, abstracts and court opinions an Ngram and paste URL... Window of the transliterated Ngram to Choose a place to share your Trends link of the transliterated Ngram to a! Into your RSS reader Google search results language processing tasks above 90 % for part-of-speech tags Code to n-grams... Collected for Google books Ngram Viewer & # x27 ; s based material! A given paper using Google Scholar Citations lets you track Citations to your publications time. N successive items in a list of all the other Volume 2: Papers... Searches, inflections and case-insensitive searches for one particular Ngram ) and used starting. Is claiming that it has scanned 10 % of the input query a list of the. Tracking the occurrence of words & amp ; phrases in books is as... Given paper using Google Scholar in books and if so what defines its direction implemented in R can., copy and paste this URL into your RSS reader '' ), divided by 4 this. Your publications over time you can search for them by appending _INF to Ngram..., IEEE,. did n't normalize by the number of books and outputting a for... Your search from well, Select your source type demo Papers ( ACL '12 ) ( 2012 ),... Also adjust the language of then how to cite google ngram the yearwise sum of the most common case-insensitive variants the!, or ask as a noun for scientific researches too, and books from later years are randomly..

Is Emma Winkler Related To Henry Winkler, Diy Giant Crayon, Nombre Que Signifique Hijo Deseado, Articles H